3.282 \(\int \frac{\cos ^2(c+d x) (A+B \cos (c+d x)+C \cos ^2(c+d x))}{(b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=120 \[ \frac{2 (3 A+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^2 d \sqrt{b \cos (c+d x)}}+\frac{2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \cos (c+d x)}}{b^3 d \sqrt{\cos (c+d x)}}+\frac{2 C \sin (c+d x) \sqrt{b \cos (c+d x)}}{3 b^3 d} \]

[Out]

(2*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^3*d*Sqrt[Cos[c + d*x]]) + (2*(3*A + C)*Sqrt[Cos[c + d*
x]]*EllipticF[(c + d*x)/2, 2])/(3*b^2*d*Sqrt[b*Cos[c + d*x]]) + (2*C*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*b^3
*d)

________________________________________________________________________________________

Rubi [A]  time = 0.142894, antiderivative size = 120, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 41, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {16, 3023, 2748, 2642, 2641, 2640, 2639} \[ \frac{2 (3 A+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^2 d \sqrt{b \cos (c+d x)}}+\frac{2 B E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \cos (c+d x)}}{b^3 d \sqrt{\cos (c+d x)}}+\frac{2 C \sin (c+d x) \sqrt{b \cos (c+d x)}}{3 b^3 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(5/2),x]

[Out]

(2*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^3*d*Sqrt[Cos[c + d*x]]) + (2*(3*A + C)*Sqrt[Cos[c + d*
x]]*EllipticF[(c + d*x)/2, 2])/(3*b^2*d*Sqrt[b*Cos[c + d*x]]) + (2*C*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/(3*b^3
*d)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3023

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*
(m + 2)), Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x], x]
, x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{(b \cos (c+d x))^{5/2}} \, dx &=\frac{\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt{b \cos (c+d x)}} \, dx}{b^2}\\ &=\frac{2 C \sqrt{b \cos (c+d x)} \sin (c+d x)}{3 b^3 d}+\frac{2 \int \frac{\frac{1}{2} b (3 A+C)+\frac{3}{2} b B \cos (c+d x)}{\sqrt{b \cos (c+d x)}} \, dx}{3 b^3}\\ &=\frac{2 C \sqrt{b \cos (c+d x)} \sin (c+d x)}{3 b^3 d}+\frac{B \int \sqrt{b \cos (c+d x)} \, dx}{b^3}+\frac{(3 A+C) \int \frac{1}{\sqrt{b \cos (c+d x)}} \, dx}{3 b^2}\\ &=\frac{2 C \sqrt{b \cos (c+d x)} \sin (c+d x)}{3 b^3 d}+\frac{\left ((3 A+C) \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 b^2 \sqrt{b \cos (c+d x)}}+\frac{\left (B \sqrt{b \cos (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{b^3 \sqrt{\cos (c+d x)}}\\ &=\frac{2 B \sqrt{b \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^3 d \sqrt{\cos (c+d x)}}+\frac{2 (3 A+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 b^2 d \sqrt{b \cos (c+d x)}}+\frac{2 C \sqrt{b \cos (c+d x)} \sin (c+d x)}{3 b^3 d}\\ \end{align*}

Mathematica [A]  time = 0.1648, size = 85, normalized size = 0.71 \[ \frac{2 (3 A+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+6 B \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )+C \sin (2 (c+d x))}{3 b^2 d \sqrt{b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/(b*Cos[c + d*x])^(5/2),x]

[Out]

(6*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 2*(3*A + C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] +
 C*Sin[2*(c + d*x)])/(3*b^2*d*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 3.432, size = 285, normalized size = 2.4 \begin{align*} -{\frac{2}{3\,{b}^{2}d}\sqrt{b \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\,C \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +3\,A\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -3\,B{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}+C\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) -2\,C \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-b \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}- \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2} \right ) }}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{b \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x)

[Out]

-2/3*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/b^2*(4*C*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c
)+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)+C*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-2*C*sin(1/2*d*x+1/
2*c)^2*cos(1/2*d*x+1/2*c))/(-b*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/sin(1/2*d*x+1/2*c)/(b*(2*c
os(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \sqrt{b \cos \left (d x + c\right )}}{b^{3} \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))/(b^3*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{2}}{\left (b \cos \left (d x + c\right )\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*cos(d*x + c)^2/(b*cos(d*x + c))^(5/2), x)